PROBABILITY

METHODS

WHEN DESIGNING A TUNNEL, we start with input parameters,
put them into a model, then a prediction comes out the other
end. Sometimes the prediction is not what we want, so we
change the design and try again, so it is often an iterative
process.
The usual input parameters are:
e Geotechnical parameters
e Groundwater pressures
e Geometry of everything: tunnel, ground surface, strata levels
(or dips and strikes of strata if not horizontal), etc.
e Lining material properties and section dimensions
¢ Imposed loads, e.q. surcharge, support pressures,
compensation grouting, M&E equipment loads etc.

First we'll take a look at some real data to see why geotechnical

Figure 1: Undrained shear strength vs depth
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In this article,
Dr Benoit Jones

looks at probabilistic methods
for designing tunnels.

design is so difficult — because selecting the values of
geotechnical parameters to use in design requires an in-depth
knowledge of statistics and a lot of skill and judgement. In
recent years, some people have tried to take a probabilistic
approach instead, and this is what the focus of the rest of this
article will be.

Real ground properties

In any particular stratum, we assume that the ground has either
constant properties or that these vary with depth. However, the
real world is not like that. The real world is like this (Figure 1):

In Figure 1, which is typical of good quality site investigation
data, one can see that there may be a trend of increasing S, with
depth, but there is a considerable amount of scatter. It is not
obvious where we should place a linear trendline that represents
the mean values.

A theoretical minimum possible value of S, can be introduced,
based on a minimum historic overburden of 5m, assuming the
unit weight of the clay is 20 kN/m? and assuming the
groundwater table is at the surface both historically and at
present, and assuming a ratio {5./0,")ac = 0.23 when normally
consolidated, using the following equation:

5)- (), oce
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This theoretical minimum possible value is shown in Figure 1 as
the dotted line.

If we ignore values below the theoretical minimum, assuming
that these samples must have been disturbed (Bond & Harris,
2008:146), and if we assume the data is normally distributed,
then after some linear regression, one can find the linear trend
line of the mean (the best fit line) as:

S, (kPa) = 50 + 4.4z

This best fit trend line is shown in Figure 2. The standard
deviation may also be calculated, and for this data it is 55.5 kPa,
This is also shown on Figure 2

It would probably be better to use a lognormal distribution in this
case, since it seems there is more scatter to the right of the best
fit line than to the left. In these situations the mean and standard
deviation may tend to increase as the sample size increases when
a normal distribution is used, whereas the statistics of a
lognormal distribution remain constant and will model the data
more closely.

Variability of input parameters
When we design underground structures, to allow for uncertainty
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Figure 2: Statistical interpretation of undrained shear strength

data assuming a normal distribution
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the values of the soil or rock parameters we choose are, according
to Eurocode 7, "a cautious estimate of the value affecting the
occurrence of the limit state” (EN 1997-1, 2.4.5.2(2)P). These
cautious values are termed ‘characteristic values’. We are going to
assume for now that we are considering a limit state governed by
a large zone of ground, for instance global stability or structural
design of the tunnel lining.

In order to estimate the characteristic value, we need to know
the statistics, but we also need to know the confidence level. In
order to assess confidence, we can use Student’s t-distribution.
Based on the number of samples, we can find the 5% fractile of
the mean value at any depth using multivariate statistics, and
these are the characteristic values. | won't go into the details here;
very good guidance with examples can be found in Bond & Harris
(2008).

By taking a cautious estimate of the mean as the characteristic
value, we are implicitly assuming that all the samples we have
tested in the site investigation are represented in the zone of
ground we are considering, i.e. that the ‘scale of fluctuation’ of
the parameters is much smaller than the zone of ground being
considered.

This single characteristic value, or single linear relationship as in
our example, is then used in design. All the site investigation data
is boiled down to a single value or equation using engineering
judgement and/or statistical methods. Although the design is

probably safe, we actually don't know the probability of failure.

An alternative to this approach is to use probabilistic methods,
which retain the variability of the input parameters. The most
straightforward method would be to randomly sample values of
all the input parameters that are subject to variation. One might
assume that the surface and strata levels are known and constant,
so it is usually only the soil parameters and sometimes the
structural materials such as concrete, that are sampled. It is
important that the random sampling is weighted such that after a
large number of samples are taken, the distribution of the
sampled input parameters is the same as the actual distribution of
the soil parameter.

Each time a set of random values are sampled, an analysis is
performed. After a large number of samplings and analyses, the
results will be found to converge on a probability distribution. This
distribution can be used to ensure the design has an acceptably
low probability of failure. This is known as a Monte Carlo analysis.
To achieve convergence can take up to tens of thousands or
hundreds of thousands of cycles, depending on the number of
variables and the acceptable error. If one had to manually (or even
automatically) run a finite element analysis each time, this would
be guite a big job.

Mollon et al. (2013) and Miro et al. (2015) both got around this
drawback of the Monte Carlo method by using a computationally

An alternative to
this approach is

to use probabilistic
methods, which
retain the
variability of the
input parameters.

iInexpensive analytical surrogate model instead of the full 3D finite
element model. The 3D numerical model of the tunnel was used
to produce an analytical response surface to characterise the
output, which was then used in the Monte Carlo analysis. This
sounds a bit like telling it what response you expect, then surprise
surprise you get the response you expected, but it is actually a bit
more rigorous than that. Both Miro et al. and Mollon et al. only
modelled a single homogeneous stratum of soil.

There are other ways to make Monte Carlo analysis much more
efficient, and lately these have been applied to tunnel designs.
Svoboda & Hilar (2015) used a method called Latin Hypercube
Sampling. This is a method that provides a set of samples that are
carefully weighted so that they will reproduce the same mean and
standard deviation as the input parameter, as well as the
correlations between input parameters. Thus, a much reduced
number of samples is required and hence a much reduced number
of analyses.

Nasekhian et al. (2012) used the Point Estimate Method and the
Random Set Method on a tunnel problem. These methods also
dramatically decrease the number of simulations required, while
maintaining acceptable accuracy of the output probability
distribution function. Again, the problem was simplified by
assuming homogeneous ground. The model was 2D, but one of
the variables was the relaxation factor, which was used to take
account of the 3D effect.
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Spatial variability

As we have seen, the standard approach to selecting a characteristic
value of a geotechnical parameter for a limit state dependent on a
large zone of ground assumes that the variability within that zone of

There are other ways to
make Monte Carlo analysis
much more efficient, and

lately these have been

applied to tunnel designs.

ground is similar to the variability in the site investigation data. In
effect, the scale of fluctuation of geotechnical parameters is assumed
to be very small compared to the limit state considered (Hicks &
Nuttall, 2012). Only one value is assigned to the ground in the design
model and the ground is assumed to be homogeneous. Similarly, the
major drawback with the probabilistic methods described so far is
that in every simulation the soil or rock is assumed homogeneous.
This in essence assumes that the scale of fluctuation of parameters is
much larger than the zone of ground governing the limit state.

We know from site investigation data (for example, Figure 1) that
the ground is rarely homogeneous, and that there is spatial variation
of parameters within it (Phoon & Kulhaway, 1999a & 1999b). Phoon
& Kulhawy (1999a) quote a range of values of vertical scale of
fluctuation between 1m and 6m and horizontal scale of fluctuation
between 3m and 80m for strength parameters in a variety of different
soil types. Therefore it usually cannot be considered to be either much
larger or much smaller than the zone of ground affecting the
occurrence of the limit state.

So the ground is heterogeneous. It has weaker areas and stronger
areas, softer areas and stiffer areas. As it is loaded, the real stress
paths are far more complex than we can imagine. The question then
is: does it matter? Does heterogeneous ground behave differently to
homogeneous ground? Or does heterogeneity somehow average
out?

Spatial variation can be modelled by using a Monte Carlo method
to assign random values of the parameters to different areas within a
model. This is sometimes called the ‘random field method’. The size
of the areas is key — an 'auto-correlation distance’ is defined, which is
related to the scale of fluctuation, over which parameters can be
considered to remain constant.

For slope stability, Hicks & Nuttall (2012) and Griffiths & Fenton
(2007) found that the mean factor of safety was lower when spatial
variation was modelled, as failure surfaces followed a path of least
resistance. This may be due to the different scales of problem and
different scales of fluctuation modelled, and also how the areas
modelled lined up with failure surfaces. They used the random field
method to apply values of parameters to a finite element mesh that
were spatially correlated, that is, where the distance between
midpoints of the finite elements determined how much the
parameters could vary. This is sometimes referred to as the ‘random
finite element method’ or ‘RFEM’ (Fenton & Griffiths, 2007).
Papaioannou et al. (2009) also found that ignoring spatial variation
led to an overestimate of probability of failure, this time for a rock
tunnel with 1100m of overburden.

Conclusions

The standard Eurocode 7 approach to design assumes that the scale
of fluctuation of geotechnical parameters is much smaller than the
zone of ground affecting the occurrence of the limit state. The design
is safe but the probability of failure is unknown.

Probabilistic methods are becoming more accessible as clever
rmethods to reduce the number of simulations are introduced,
computer power increases and commercially-available software
begins to incorporate it as an option. These methods allow
calculation of the probability of failure, but ignore
spatial variability. As we have seen, probabilistic
methods assume that the scale of fluctuation of
geotechnical parameters is much larger than the
zone of ground affecting the occurrence of the
limit state.

Real soil or rock is heterogeneous, with a scale of
fluctuation that is rarely much larger or much
smaller than the zone of ground affecting the
occurrence of the limit state (Phoon & Kulhawy,
1999a). Studies comparing RFEM with probabilistic
methods have found that the probability of failure
is different. Therefore, modelling this heterogeneity
may be of interest. Applying heterogeneity to the design model using
coefficient of variation and scale of fluctuation in a random field
approach may be where the future lies.
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